
Alphafold on HPC 1

Alphafold on HPC
Introduction
Alphafold is a “deep learning” algorithm that takes as an input a fasta file containing
a single protein amino acid sequence and outputs a directory containing various
intermediate data files; performance characteristics; and five predicted protein
structures in pdb format. The pdb structures are probably best reviewed in pymol.

Alphafold has been implemented on the University of Manchester HPC cluster. This
document describes submitting jobs to the cluster. The first is a simple shell script
that should be edited to submit the required single fasta file to alphafold.

I will also provide guidance on how to separate a large fasta file containing many
protein sequences into a directory containing a single fasta file for each sequence,
named for the sequence.

Local Tools
You need an terminal interface to the HPC. It is possible to access HPC through any
command line terminal. On windows the easiest method is to use mobaxterm
(https://ri.itservices.manchester.ac.uk/htccondor/getting-
started/connecting/windows/) which incorporates both a terminal interface and a file
browser and allows copying of files or directories by drag-and-drop.

You will also need a test editor. There are many available, and there is one build into
mobaxterm. I also use notepad++ (https://notepad-plus-plus.org/downloads/). The
mobaxterm editor will update the file on HPC on save, which is a useful feature if
making small edits to a file you want to run.

It is important to note with text editors that Windows and Unix use different end-of-
line (EOL) codes. If write a script from scratch on windows it is likely it will fail on the
unix based HPC due to incorrect EOL. In notepad++ the EOL may be changed
through the menu:
 Edit ⇒ EOL Conversion ⇒ Unix (LF).
In the mobaxterm text editor it may be changed through the menu:
Encoding ⇒ Unix.

Example Scripts Manifest

https://ri.itservices.manchester.ac.uk/htccondor/getting-started/connecting/windows/
https://notepad-plus-plus.org/downloads/

Alphafold on HPC 2

This guide comes with example scripts in a zipped directory example.zip .

example-¬
 ⊢ singleFasta-¬
 | ⊢IOR1.fasta
 | LtestAlphafoldSingleScript.sh
 |
 L fastaManipulation-¬
 LYeastMapK.fasta

Unzip the example directory and copy it to the scratch directory on the HPC.

Keep the local copy of the example directory open to review the scripts.

Single File With Script
Navigate to the singleFasta directory on HPC:

cd ~/scratch/example/singleFasta

Now you are in a directory containing a script testAlphafoldSingleScript.sh and a
fasta file IOR1.fasta .

Description of the Components of the Script
The script contains the following code:

#!/bin/bash --login
#$ -cwd # Job will run from the current directory
#$ -l v100=1 # Job will run using 1 x GPU
#$ -pe smp.pe 8

Load the version you require
module load apps/singularity/alphafold/2.1.1

run_alphafold.sh -f `pwd`/IOR1.fasta -t 2022-04-01 -o `pwd`/output_directory -m monome
r -c full_dbs
PLEASE NOTE: `pwd` is required so the singularity container is able to map to the CS
F filesystem

The meaning of which breaks down as follows:

http://testalphafoldsinglescript.sh/

Alphafold on HPC 3

#!/bin/bash --login is the shebang or hash-bang. It tells the grid engine the script is
to be run in bash, logged in as you.

The #$ lines tell the grid engine how to run the script. In this case -cwd to inherit the
current working directory; -l v100=1 the required resources, in this case requiring a
node with a single GPU; and -pe smp.pe 8 requiring eight cores. That last is an
excess of compute since most of the work is done by the GPU, I have been running
alphafold with -pe smp.pe 2 . There are many more settings for qsub which may be
viewed on the HPC cluster with by typing qsub -help on the command line.

module load apps/singularity/alphafold/2.1.1 tells the node to load the module that is
capable of running alphafold and will make the run_alphafold.sh script available on
the comand line.

Now finally alphafold is run. There is documentation available for running alphafold
(https://github.com/deepmind/alphafold#running-alphafold).

Part of that documentation provides an example run on docker:

python3 docker/run_docker.py \
 --fasta_paths=T1050.fasta \
 --max_template_date=2020-05-14 \
 --model_preset=monomer \
 --db_preset=reduced_dbs \
 --data_dir=$DOWNLOAD_DIR

These settings are duplicated in the HPC implementation.

The local documentation can be obtained by loading the module on the head node
and running the script on its own:

module load apps/singularity/alphafold/2.1.1
run_alphafold.sh

Which produces documentation:

Please make sure all required parameters are given
Usage: /opt/apps/apps/singularity/alphafold/2.1.1/bin/run_alphafold.sh <OPTIONS>
Required Parameters:
-o <output_dir> Path to a directory that will store the results.
-m <model_preset> Choose preset model configuration - the monomer model, the monomer
 model with extra ensembling, monomer model with pTM head, or multimer model (default:
'monomer')
-f <fasta_path> Path to a FASTA file containing one sequence
-t <max_template_date> Maximum template release date to consider (ISO-8601 format - i.
e. YYYY-MM-DD). Important if folding historical test sets

https://github.com/deepmind/alphafold#running-alphafold

Alphafold on HPC 4

Optional Parameters:
-g <use_gpu> Enable NVIDIA runtime to run with GPUs (default: true)
-n <openmm_threads> OpenMM threads (default: all available cores)
-c <db_preset> Choose preset MSA database configuration - smaller genetic datab
ase config (reduced_dbs) or full genetic database config (full_dbs) (default: 'full_db
s')
-p <use_precomputed_msas> Whether to read MSAs that have been written to disk. WARNIN
G: This will not check if the sequence, database or configuration have changed (defaul
t: 'false')
-l <is_prokaryote> Optional for multimer system, not used by the single chain syste
m. A boolean specifying true where the target complex is from a prokaryote, and false
 where it is not, or where the origin is unknown. This value determine the pairing met
hod for the MSA (default: 'None')
-b <benchmark> Run multiple JAX model evaluations to obtain a timing that exclu
des the compilation time, which should be more indicative of the time required for inf
erencing many proteins (default: 'false')

Which can be cross referenced against Alphafold documentation.

So the script above specifies to run alphafold with

-f `pwd`/IOR1.fasta which says look in the current working directory passed to the
grid engine by the #$ -cwd setting above, for fasta file IOR1.fasta .

-t 2022-04-01 which limits the pdb files used to train the model to before this date. It
is included in the test script to ensure consistent results. It may be removed from
production scripts.

-o `pwd`/output_directory sets the output directory.

 -m monomer Indicates monomer model is to be used. Other settings are available see
the alphafold documentation for details.

-c full_dbs sets use of the full genetic database. This may be set to reduced_dbs for
faster, less accurate folding.

Submitting the Job to the Grid
So you should now be interacting with the HPC through a terminal.

Check you are in the correct dir by typing pwd . This should return something like:
 /mnt/<home-server>/<username>/scratch/example/singleFasta
Now submit the job:

qsub testAlphafoldSingleScript.sh

That’s it. You will get a message saying something like:
Your job <a number> (" testAlphafoldSingleScript.sh ") has been submitted

http://testalphafoldsinglescript.sh/

Alphafold on HPC 5

You can check the status of your job by typing qstat . This will produce a table of
your current jobs. The important thing to note is the letter under state . If this is r
the job is actually running. If the code is qw then the job is in the queue to be run.
However if the code is Eqw there is something wrong with the script or the way it was
submitted and you will need to solve a problem.

Monitoring Job Progress
Now the job is running the working directory will look like this:

example-¬
 L singleFasta-¬
 ⊢IOR1.fasta
 ⊢testAlphafoldSingleScript.sh
 ⊢ld.so.cache
 ⊢testAlphafoldSingleScript.sh.e<jobno>
 ⊢testAlphafoldSingleScript.sh.o<jobno>
 L output_directory-¬
 |...

If working on mobaxterm the directory view will need to be manually updated to
show the change. This is the green dot with the curved white arrow in it above the
file browser. Alternatively type ls or ls -l to see the dir contence in the terminal.

 The files *.e<jobno> and *.o<jobno> contain the error and standard output of the job
respectively. Alphafold seems to put all of its running information out to *.e<jobno>
and if the job fails reviewing the contents of *.e<jobno> may offer some clue at to
why. To monitor the progress of the job in real time directly on the terminal type:
 tail -fn1 testAlphafoldSingleScript.sh.e<jobno>
Which will print each successive line of output to the terminal. For a long process like
alphafold that is like watching paint dry. To exit this view type CTRL+z .

In the event that a job permanently shows status Eqw or you realise a mistake and
would like to stop the job before it completes the comand is qdel <jobno>

Converting Multi-Sequence Fasta File to
Multi-Single-Sequence Fasta Files
So if you have a multi sequence fasta file and you want to convert it into multiple
single sequence fasta files you can use a program called awk .

Alphafold on HPC 6

This is probably a small enough operation that it could be run on the head node. See
further down for how to submit the

So navigate to ~/scratch/example/fastaManipulation

Now copy paste:

awk '/^>/ {S=sprintf("%s", $0);D=gensub(/\s.+$/,"",S);E=gensub(/>/,"","g",D);F=gensub
(/\|/,"_","g",E);print D > F ".fasta"; next;} {printf("%s\n",$0) >> F ".fasta";nex
t;}' < YeastMapK.fasta

What this does is run through the file YeastMapK.fasta which contains 123 proteins.

'>' tells awk the symbol

For lines that begin with > (thats the '/^>/ bit) which contain the sequence names
do the operations inside the first set of {} which means the following:
Variable S gets the whole line.
Variable D gets S with everything from the first space removed.
Variable E gets D with the > removed from the front
Variable F gets D with the | replaced with _
Now print D to a file called F.fasta.
For subsequent lines not begining with > just print the whole line to the F.fasta file.
When a new line starting with > is encountered the process starts again and a new
file is started.

The result of this for a set of protein sequences in uniprot format is a whole set of
files with filenames containing the the accession numbers, and correctly formatted
single protein sequence fasta files that may be submitted to alphafold.

Alternative formats of fasta file may need modifications to the cascade of pattern
substitutions to form suitable file names and annotations in the newly written files.

If a fasta file is large, it would be better to submit the job to a node. There is a neat
way to do a submission of a one liner to a node as follows:

qsub -cwd -pe smp.pe 2 -N splt <<HERE
#!/bin/bash --login
awk '/^>/ {S=sprintf("%s", $0);D=gensub(/\s.+$/,"",S);E=gensub(/>/,"","g",D);F=gensub
(/\|/,"_","g",E);print D > F ".fasta"; next;} {printf("%s\n",$0) >> F ".fasta";nex
t;}' < YeastMapK.fasta
HERE

Alphafold on HPC 7

This just submits the job to a node with two cores, running the code in the current
working directory with the name “splt”. Then it uses a “here doc” to read the code
between <<HERE and HERE as the input script.

