
Introduction to High Performance
Computing (HPC) – Session 2

using the Computational Shared Facility (CSF)

Research Infrastructure Team, IT Services

its-ri-team@manchester.ac.uk

https://ri.itservices.manchester.ac.uk/csf3/

Course materials / slides available from:
https://ri.itservices.manchester.ac.uk/course/rcsf/

Housekeeping

• Please let me know if you’re leaving
– Morning: Session one: 10am – 12:30pm (practicals 1, 2, & 3)

– Afternoon: Session two: 1:30pm - 4pm (practicals 4 & 5)

• 1-to-1 help is available if needed during exercises.
We’ll describe how this works before the first one.

• Please give feedback on this course

– Quick form at
https://goo.gl/forms/zfZyTLw4DDaySnCF3

(choose "Introduction to HPC (Using CSF)")

– Feedback is important to help us improve our courses

– Records your attendance on the course
2

https://ri.itservices.manchester.ac.uk/course/rcsf/Recap slide skipped in training room

Jobs, Jobscripts and the Batch System
• We want to do computational work - “jobs”

• You decide:
– Which program(s) to run
– Which directory to run from (within scratch :-))
– Which resources it needs (#cores, CPU type, memory)

• Write these requirements in a jobscript
• Submit your jobscript to the batch system (SGE)
• SGE decides exactly when and where the job runs

3

Login

node

Job

queue

/scratch

home

Backend compute nodes

Recap slide skipped in training room

A simple Jobscript – Serial (1 core)

#!/bin/bash --login

#$ -cwd

#$ -N myjob

#$ -l resource

Let's do work

date

hostname

sleep 120

date

#$ indicates a batch
system parameter to
specify our job
requirements. We’ll use
various combinations of
these.

First line indicates we
use the bash script
language to write our
jobscript.

#! on first line only (a special line)

-cwd indicates we’ll
run from our current
(working) directory.
Input / output files will
usually be found here.

Actual Linux commands we
run in our job. They will
execute on a compute node. 4

-N (optional). Set the
jobname. Otherwise will
use name of your jobscript
as the name.

lines are just
comments - anything
on the line after it
will be ignored.

-l (optional) used to add
extra resource requirements
e.g. memory, time limits
#$ -l course only works
on the day of a course.

myjob.txt

Recap slide skipped in training room

Connect to CSF from Windows

• Access the CSF from a PC / laptop using an SSH (Secure Shell) app

– Sometimes called a "terminal".

– There’s no web-site or other fancy GUI on the CSF – use the "command-line".

• Windows users need to install a free terminal app called MobaXterm

• https://mobaxterm.mobatek.net/download-home-edition.html
the Home edition (portable edition) does not require Administrator rights - just
extract the small .zip file in your P-Drive or USB stick for example.

5

1. Download using the

blue box.

2. Once downloaded,

right-click on the .zip file
and select:

"Extract all …"

This will unpack the .zip
file to a folder.

Recap slide skipped in training room

MobaXterm “Session”
(username saved in the session setup)

1. After extracting the .zip file, start MobaXterm_Personal_xy.z

(double-click on the icon)

2 (1-6). Create a "Session"

which saves the CSF's details
along with your username.

This is needed to make file
drag-n-drop work (see later.)

3. This will then start to

log you into the CSF – it
will ask for your
password. Type carefully!

4. See slide about 2FA – you may be asked for DUO after your password

Recap slide skipped in training room

We're on (one of) the CSF

login nodes. Any
commands you use will be
typed "at the prompt",

which shows your
username and current

directory (folder.)

Drag-n-drop file browser

for upload / download

(new users won't have as

many items in the list!)

If asked to save your

password, we recommend
you say "No", for security.

Recap slide skipped in training room

Connecting from Linux / Mac
• From MacOS using a Terminal window (after installing Xquartz)

• From Linux using a Terminal window

• Finished using CSF? Log out with: logout or exit

8

ssh -Y username@csf3.itservices.manchester.ac.uk

Central IT Services username.
Answer 'Yes' to continue if asked.
Enter central IT password when asked (same as for
email)

UPPERcase Y

ssh -X username@csf3.itservices.manchester.ac.uk

Central IT Services username.
Answer 'Yes' to continue if asked.
Enter central IT password when asked (same as for
email)

UPPERcase
X

Recap slide skipped in training room

ACCESSING APPLICATION S/W
Modules

9

https://ri.itservices.manchester.ac.uk/csf3

https://ri.itservices.manchester.ac.uk/course/rcsf/

Training room presentation begins here

Access to Application Software

• Lots of different pieces of software installed
– Many different applications

– Different versions of an application

– Need to ensure job knows where an app is installed
• Try echo $PATH to see all directories the CSF will look in

• Use "modules" to set up environment for software
– In your jobscript, add some module commands

– Sets up all necessary environment variables

– Apps use these env vars to get various settings

– Can also run module commands on the login node (e.g.,
to check what apps are available)

10

Module Commands

• module avail – lists all available modules
• module search keyword – lists all modules with keyword in their name
• module list – lists currently loaded modules
• module load modulename – loads module
• module unload modulename – unloads module
• module purge – unload all modules (hopefully)
• man module – man pages for the module command
• Examples:

module load apps/binapps/matlab/R2024b

module load apps/intel-19.1/amber/20-bf12-at21-bf12

module load apps/gcc/R/4.4.1

module unload apps/binapps/starccm/18.02-double

module help compilers/intel/19.1.2

module load tools/gcc/cmake/3.28.6

• See documentation for more info
https://ri.itservices.manchester.ac.uk/csf3/software/modules/

11

Modulefile settings
• What "settings" do modulefiles actually make?

– Depends on the application (eg the installation instructions)

• Try the following commands on the login node:

which matlab
/usr/bin/which: no matlab in(/opt/site/sge………

module load apps/binapps/matlab/R2024b

which matlab
/opt/apps/apps/binapps/matlab/R2024b/bin/matlab

• This shows that the modulefile made the matlab installation available.
• A job can do this to run that version of matlab.
• If interested, to see all of the settings that a modulefile will make:

module show apps/binapps/matlab/R2024b

But the idea is you don't need to know the settings - modulefiles take care of the details
so you can concentrate on what your jobs actually do with the application.

• See documentation for more info
https://ri.itservices.manchester.ac.uk/csf3/software/modules/

12

Loading modulefiles:
On login nodes OR in the jobscript

On the CSF login node run the following commands

13

#!/bin/bash

#$ -cwd

#$ -l resource

#$ -V # Inherit login node env

(note: UPPERcase V)

Settings copied when

job is submitted

Let's do some work

R CMD BATCH myscr.R

myjob.txt

module load apps/R/4.4.1

qsub myjob.txt

Extra flag needed to inherit all
settings from login node
(settings are copied when job
is submitted, not when it
runs)

Extra flag needed to
load modulefiles in
the jobscript

#!/bin/bash --login

#$ -cwd

#$ -l resource

Load module inside jobscript

module load apps/R/4.4.1

Let's do some work

R CMD BATCH myscr.R

myjob.txt

qsub myjob.txt

Inherit from the login node (not recommended) In the jobscript (recommended!)

Which Modulefiles to Load

• How do I know which modulefile to load for a particular
app?
– https://ri.itservices.manchester.ac.uk/csf3/software/

14

PARALLEL COMPUTING
Background

15

Motivations for Parallel Computing
• CSF compute nodes have multiple CPU cores (28,32,168)
• Many apps can use multiple cores to speed up the

computation
– Split the "computation" over multiple CPU cores

• Each core does a small(er) part of the computation, all in parallel
• "Data parallelism" (same instructions run on each portion of "data")

– May need to combine partial results together at end
– Should get final result quicker

• Ideally N cores giving results N times quicker

• Also provides access to more memory
– Each core has access to ~4GB RAM (std nodes)

• Ideally M cores for M times larger problem

• Both of the above!
• Another "parallel" method: High Throughput Computing

– Multiple instances of an app with different params or data
16

8GB
16GB

Simple example: sum a list of numbers
• Could do this example manually with 4 volunteers
• 1-core: sum = sum + numberi (for i = 1 to N)

– Let's say it takes T1 seconds to complete

• 4-cores: Each core sums a smaller list of numbers

– Takes T4 ≈ T1/4 + Tserial seconds to complete (< T1)
17

9 2 1 7 9 8 4 5 2 1 0 2 6 6 3 0 7 9 5 5 2 8 0 2 3 7 6 4 1 2 0 9

∑ = 135

Final serial step done by Core #1 to sum the partial sums.
Core #1 needs access to the partial sums from other cores

9 2 1 7 9 8 4 5 2 1 0 2 6 6 3 0 7 9 5 5 2 8 0 2 3 7 6 4 1 2 0 9

∑ ∑ ∑ ∑

45 20 38 32
partial

sums

∑ = 135

Core #1 Core #2 Core #3 Core #4

Parallel Job Type #1 - single node
• A program runs on multiple CPU cores of one compute node
• Two common techniques used by apps:

– Typically, one copy of the program runs
• "Shared memory" (all cores see same memory)
• Cores synchronize access to shared memory (data)
• Look for "OpenMP" / "multi-threaded" /

"Java threads" … in an application's docs

– Or coordinated copies of the program run,
each communicating with each other

• "Distributed memory" (each core has its own mem)
• They communicate to share data, results
• Look for "MPI" or "message passing"

in the application's docs

• Your app must have been written to use one
(or both) of the above parallel techniques!

• We'll run this "single compute-node" type of job today
18

16GB

4GB 4 44

Distributed Memory

Shared Memory

Parallel Job Type #2 - multi-node
• Running a program over several compute nodes (and the

many cores on those nodes)
– Must be the "MPI" / "message passing" style of app (as before)
– Uses more cores than in a single compute node

• On CSF we require you to use all of the cores in each compute node!

– They communicate to share data, results etc (as before)
• Over the fast internal InfiniBand network
• Possibly via shared memory as before, if on same compute node

• Your app must have been written to support this!
• We will not run this type of job today.

19

CSF InfiniBand network CSF InfiniBand network

Distributed Memory Hybrid Memory (often MPI+OpenMP)

Note: the diagrams only show a few cores in use for simplicity. On the CSF you must use all cores in each node.

Parallel Job Type #3 - High Throughput
Computing (HTC)

• Lots of independent computations. EG:

– Processing lots of data files (e.g., image files)

– Running the same simulation many times over
with different parameters ("parameter sweeps")

• Run many copies of your program

– Programs may be serial (single core) but running
lots of them at once. They don't communicate.

• Easy to do on CSF. See also the UoM Condor
Service (formerly the EPS Condor Pool)

– Free resource, uses UoM idle desktops over night
20

Example: Image Analysis
• High Throughput Computing

– Not all s/w is "HPC" / parallel

– But you might have lots of data

– Each image takes 1hr to process
(and are independent - process

in any order)

21

8 GB

Desktop: 4 cores, 4 copies
of software running.
~100 days to complete!

128 GB

Single HPC compute
node: 16 copies of
software running.
~26 days to complete

Example: 10,000 image scans to be analysed by an image
processing application. Each image takes 1 hour to process.

4 GB

Laptop: 1 copy of software
running.
Over 1 year to complete!!

128 GB 128 GB 128 GB 128 GB

Multiple HPC compute nodes:
64 copies of software running.

~6 days to complete

Which style of parallel job to use
• Mostly determined by the capability of your app

– Is it serial (1-core) only? Is it multi-core (single-node) only? Is it
multi-node capable?

• A serial app will only ever use 1 core
– But run as an HTC job, you can still process lots of data in parallel

• Use many cores, running multiple independent jobs (see later)

• Parallel app using only shared memory
– "OpenMP", "multithreaded", "Java threads", "shared memory"
– Can only use 1 compute node (2--32 Intel or 2--168 AMD cores)

• Parallel app using distributed memory
– "MPI" (message passing interface), "distributed memory"
– Can use many cores across multiple compute nodes
– But consider: the network

• Communication faster within same compute node
• Communication slower on network between nodes
• Apps may not speed up, the more cores (and nodes) you use (see later)22

Parallel Jobscript on CSF

• Use a jobscript to ask the batch system to find N
free cores
– While matching other requirements (memory,

architecture, fast networking, GPU etc).

1. Add one extra line in jobscript to request:
– parallel environment (multi-core or multi-node)
– and number of cores to reserve

2. Inform your app how many cores to use
– Remember, the jobscript says how many cores your

job requires (the batch system will allocate those
cores to your job.)

– But you must still ensure your app uses no more!!
• This is not automatic and how you do it varies from app to

app
23

Parallel Jobscript – Multi-core
(single-node)

#!/bin/bash --login

#$ -cwd

#$ -pe smp.pe 4

Set up to use a chemistry app

module load apps/intel-17.0/gromacs/2018.4/double

Inform app how many cores to use

export OMP_NUM_THREADS=4

This job runs "gromacs"

mdrun_d

#! and #$ see
serial jobscript
earlier.

-pe indicates
we’ll run a
parallel job in a
particular parallel
environment.

smp.pe is the parallel environment name.
This one means: app will use a single
compute node (2 to 32 Intel cores.)

Any commands we run in our job.
They will execute on a compute
node that has required number of
cores free. mdrun_d is Gromacs.

4 is the number of cores
we want to reserve in the
system. Each PE has a
maximum allowed.

indicates line is
a comment, so
does nothing.

Must somehow inform the app how many cores
we reserved. Must use the number (4) given on
the -pe line. Our app wants OMP_NUM_THREADS
environment variable setting.
Your app might use a different method! 24

Key concept!

myparajob.txt

Avoid a common mistake

• Can use $NSLOTS for correct number of cores

(Check: your app might not use OMP_NUM_THREADS)

25

#!/bin/bash --login

#$ -cwd

#$ -pe smp.pe 4 # Can be 2 to 32

Set up to use "gromacs"

module load apps/intel-17.0/gromacs/2018.4/double

Inform app how many cores to use

export OMP_NUM_THREADS=$NSLOTS

This job runs "gromacs"

mdrun_d

$NSLOTS is automatically set to the

number, 4 in this case, given on -pe line.
Will be 1 in a serial job (no -pe line).

Our app wants OMP_NUM_THREADS

environment variable setting.
Your app might use a different method!

Parallel jobscript - Multi-core (cont…)

• That was a multicore (single compute node) example

• Using an app named Gromacs as an example
https://ri.itservices.manchester.ac.uk/csf3/software/applications/gromacs/

• Requested a parallel environment (-pe) & 4 cores
$# -pe smp.pe 4

Will run the app on a single node (Intel CPUs), allocating
multiple cores

• smp.pe=symmetric multi-processor parallel environment

• Then informed the app to use 4 cores via OMP_NUM_THREADS
environment variable (very common).
• Special $NSLOTS variable always set to number of cores on PE line

26

• As with the serial job submit it to the system
with qsub and monitor with qstat

• It may take longer for more cores to become
free in the system

• You'll get the usual output files

– jobname.oJobID and jobname.eJobID

27

Parallel jobscript - Multi-core
(cont…)

New AMD nodes – October 2024

• New AMD EPYC "Genoa" nodes added Oct
2024. Up to 168 cores on a single node!

28

#!/bin/bash --login

#$ -cwd

#$ -pe amd.pe 4 # Can be 2 to 168

Set up to use "gromacs"

module load apps/intel-17.0/gromacs/2018.4/double

Inform app how many cores to use

export OMP_NUM_THREADS=$NSLOTS

This job runs "gromacs"

mdrun_d

Only thing you need to change is the PE
name: amd.pe and can increase

number of cores used.

Parallel jobscript - Multi-core (cont…)

• That was a multicore (single compute node) example

• Using an app named Gromacs as an example
https://ri.itservices.manchester.ac.uk/csf3/software/applications/gromacs/

• Requested a parallel environment (-pe) & 4 cores
$# -pe amd.pe 4

Will run the app on a single node (AMD CPUs), allocating
multiple cores

• amd.pe name is easy to remember!

• Then informed the app to use 4 cores via OMP_NUM_THREADS
environment variable (very common).
• Special $NSLOTS variable always set to number of cores on PE line

29

30

Parallel Jobscript – multi-node

#!/bin/bash --login

#$ -cwd

#$ -pe hpc.pe 128

#$ -P hpc-projectcode

Set up to use MrBayes

module load apps/gcc/mrbayes/3.2.6

App uses MPI to run across nodes

mpirun -n $NSLOTS pmb myinput.nex

#! and #$ lines
from serial
jobscript earlier.

-pe indicates
we’ll run a
parallel job in a
particular parallel
environment.

hpc.pe is the parallel environment name. This one means: app will
use multiple compute nodes (all 32 cores must be used on each)
and has fast InfiniBand networking between the nodes.

The commands we run in our job.
They will execute on a compute
node that has required number of
cores free. pmb is the app name.

128 is the total
number of cores we
want to reserve in
the system. In this
PE, 128 cores = 4 x
32-core nodes.

indicates line is
a comment, so
does nothing.

Must somehow inform the app
how many cores we reserved.
$NSLOTS is automatically set to

number (128) given on -pe line.
Our app is started via mpirun
which has a -n numcores flag

-P gives a project
code, needed for
this restricted PE.

Parallel jobscript - Multi-node (cont…)

• A multi-node (but also multi-core) example

• Using an app named gulp as an example
https://ri.itservices.manchester.ac.uk/csf3/software/applications/mrbayes/

• Requested a parallel environment (pe) & 128 cores
$# -pe hpc.pe 128

$# -P hpc-projectcode

– Informed the app to use 128 cores via mpirun -n $NSLOTS

(very common – lots of apps use this method.)

– mpirun starts multiple copies of an MPI app on allocated nodes

– Special $NSLOTS variable always set to number of cores on PE line

• Access to the "HPC Pool" requires an application
form, completed by PI/Supervisors on a per-project
basis
– https://ri.itservices.manchester.ac.uk/csf3/hpc-pool/application-questions/31

Parallel Environments (PE)
https://ri.itservices.manchester.ac.uk/csf3/batch/parallel-jobs/

32

PE Name Description

smp.pe N 2-32 cores, single compute node. ~4-5GB per core. Jobs will be placed on
Intel "broadwell" (max 24 cores/job) or Skylake (max 32 cores/job)

-l architecture Ignore! (broadwell or skylake or cascadelake or icelake)

-l short 4GB/core "haswell" (1 hour runtime limit). For dev/test work. Max job size
of 12 cores.

-l mem512 32GB/core Intel "haswell". Max job size of 16 cores.

-l mem1500 46GB/core Intel "skylake" or "cascadelake". Max 32 cores.

-l mem2000 62GB/core Intel "icelake". Max 32 cores.

-l mem4000 125GB/core Intel "icelake". Max 32 cores. RESTRICTED ACCESS.

PE Name Description

amd.pe N 2-168 cores, single compute node. 8GB per core. Jobs will be placed on
AMD EPYC "Genoa" (max 168 cores/job)

-l short 1 hour runtime limit. For dev/test work. Max 28 cores.

• 7-day runtime limit on jobs unless otherwise indicated in table.
• Our simple jobscript did not use any of the above. Not needed in most cases.
• If you limit a job by architecture or memory it may wait longer in the queue.

Choosing your Parallel Environment
(PE)

33

• Choosing the PE is fairly simple, but:
– Check the app's webpage for advice and examples

https://ri.itservices.manchester.ac.uk/csf3/software

– Check the PE page for limits on number of cores
https://ri.itservices.manchester.ac.uk/csf3/batch/parallel-jobs

– Only use #$ -l resource if necessary

• Use Intel (smp.pe) or AMD (amd.pe) nodes?
– Most (all) apps will run on both, but AMD nodes are newer

– The high memory nodes are all Intel CPUs (e.g., -l mem2000)

– There are now a lot more AMD CPUs available than Intel CPUs
▪ Submitting to amd.pe may result in shorter wait times

▪ amd.pe nodes have 8GB/core (smp.pe std Intel have ~4-5GB/core)

Parallel Software Performance
• You'll probably be running an app many times

• Worth small investigation to find optimal
performance parameters (#cores & #nodes)
– How many cores should I use?

• Do a few runs, vary the number of cores
– Plot time versus num cores

– Easy to do on CSF: remove PE setting from
jobscript (and -N name if used), add PE to qsub
command instead:

qsub -pe smp.pe 2 myjobscript.txt

qsub -pe smp.pe 4 myjobscript.txt

qsub -pe smp.pe 8 myjobscript.txt

34

To Assess Parallelism

• Plot the following against "Number of Cores":
– "Speed-up" or "Parallel Efficiency"

– Total memory usage?

• Look for the sweet-spot

• Calculate: Speed-up = T1 / TN

– Compare results against "ideal" scaling (where
N-cores makes it go N-times faster)

• Calculate: Parallel Efficiency = T1/ (N x TN)
– N = number of cores, TN = time take on N cores

• Pick a typical problem size for your work
35

Examples of Speed-up
• Data for popular Finite Element app on CSF

– The 'Time' graphs shows it getting faster. But…

36

Examples of Speed-up & Efficiency
• Example showing Speed-up and Efficiency values

– App multiplies two square matrices
• Measured a single multiplication of two 2000x2000 matrices

• The speed-up is reasonably close to “perfect” &
efficiency is reasonably close to 100% but…
– How will this scale as we go multi-node?

– How will this scale as the problem size increases?

– How will this scale on other hardware?
37

No. cores Time (Seconds) Speed-up Efficiency

1 45.0 1x 1.00

2 22.8 1.97x 0.99

4 11.7 3.84x 0.96

8 7.1 6.33x 0.80

PRACTICAL SESSION 4
Parallel job and scaling (no handout)

38

Practical Session 4 (Intro)

• We will measure parallel efficiency for a similar
matrix multiplication program

• But this time
– Same problem size: 2000 x 2000 matrices

– Repeats 5 times with additional maths ops on
elements

– (sort of simulates an app solving equations)

• Hardware reserved today
– Intel 32-core compute nodes

– We'll run multi-core (single node) jobs.
39

Practical Session 4 (Intro)

• This is a distributed memory MPI program
written in C
– Already compiled: executable named pmm.exe

– The pmm_jobscript can be edited as needed

• The jobscript for a parallel job must specify:
– Parallel environment (where job runs on CSF)

– Number of cores (2 or more)

• For today, use an Intel compute node (2-32
cores):
– Shared memory parallel env: smp.pe

40

Practical Session 4
• Inspect the jobscript

– cat pmm_jobscript

– Notice: initially it will use 2 cores (-pe smp.pe 2) and the job name, and hence output
filenames, is "myjob" (-N myjob).

• Edit the jobscript (gedit) and change the job name (the –N line) to be "pmm_2cores"

• Submit the job to the batch system
– qsub pmm_jobscript

• Immediately edit pmm_jobscript to change number of cores then resubmit (you don't
need to wait for the previous job to run/finish)
– Use 1, (2), 4, 8, 16, 32 cores.
– Change the job name (EG: "-N pmm_4cores") to make .o and .e output filenames different (change

the number of cores in the name - can't use $NSLOTS here sadly).

• The pmm.exe app times itself and reports how long it took to run, in its output:
– Look in the pmm_1,2,4,8,16,32cores.oJobID files (use cat, less, or gedit)

– Or, can always check the ru_wallclock (seconds) using qacct -j JobID

• Calculate the speed-up (or efficiency) for your runs – see slide 35 for the formulae.

41

MULTIPLE SIMILAR JOBS
High Throughput Computing and "Job arrays"

42

Multiple Runs of Same App

• We want to make many runs of an application to
process many different input files

– For example, on a desktop PC you might run

– If it takes 5 minutes to process one file, it will take
1000 x 5 minutes to process them all (~3.5 days)

43

myapp.exe -in mydata.1.tif -out myresult.1.tif

(wait for it to finish)

myapp.exe -in mydata.2.tif -out myresult.2.tif

(wait for it to finish)

myapp.exe -in mydata.3.tif -out myresult.3.tif

…

myapp.exe -in mydata.1000.tif -out myresult.1000.tif

How Not To Do It on the CSF (1)

• Inefficient method 1: one after another in one
job? qsub jobscript-all.txt

• This is no better than the desktop PC method

44

#!/bin/bash --login

#$ -cwd

myapp.exe -in mydata.1.tif -out myresult.1.tif

(will wait for it to finish)

myapp.exe -in mydata.2.tif -out myresult.2.tif

(will wait for it to finish)

myapp.exe -in mydata.3.tif -out myresult.3.tif

…

myapp.exe -in mydata.1000.tif -out myresult.1000.tif

jobscript-all.txt

How Not To Do It on the CSF (2)

• Inefficient method 2: lots of individual
jobscripts?

• Strains the batch system queue manager

• But, you will get many jobs running in parallel

– EG: approx 100-200 jobs running at same time
45

qsub jobscript1.txt

qsub jobscript2.txt

qsub jobscript3.txt

…

qsub jobscript1000.txt

#!/bin/bash --login

#$ -cwd

myapp.exe -in mydata.1.tif -out myresult.1.tif

jobscript1.txt

Make 1000 copies of this jobscript,
edit each one to process a different
file (mydata.2.tif, …)

Then submit each job

How To Do It - "Job Array" Jobscript

46

#!/bin/bash --login

#$ -cwd

#$ -t 1-1000

echo "I am task ${SGE_TASK_ID}"

myapp.exe -in mydata.${SGE_TASK_ID}.tif \

-out myresult.${SGE_TASK_ID}.tif

The commands we run in our job.
They will execute on backend
nodes (different cores and nodes
for different tasks).

-t makes the jobscript
automatically run a
specified number of
times. These are
called tasks. Each is
numbered uniquely
1,2,3….1000.

${SGE_TASK_ID} is automatically set
by the batch system and tells us which
task we are (1,2,…). We can use this to
do something different for each task.

1-1000 (start-end) says how many tasks to run
and how they should be numbered. Note:
Cannot start at 0. Can use start-end:increment
to increase the ID by more than 1.

arrayjob.txt

"Job Array" Jobscript

• Our app is serial (1-core) so no #$ -pe line
– But you could add one if your app is multi-core

• The total number of tasks can be 100s, 1,000s,
10,000s (seen over 50,000 on CSF)

• The system will run many of the tasks in parallel
– Usually 100s - "High-throughput Computing"
– You get lots of work done sooner
– It will eventually churn through all of them
– They are started in numerical order but no guarantee

they'll finish in that order!

• The extra jobscript #$ -t line is easy. Using the
task id number creatively is the key to job arrays.

47

The $SGE_TASK_ID variable (1)
• Want to do something different in each task. EG:

– Read a different data file to process

– Pass a different parameter to an application

• You can get this different "thing" in many ways:

– EG: Use the $SGE_TASK_ID in filenames:

48

image1

.dat

image99

.dat

Task 1 reads image_1.dat writes image_1.png

Task 2 reads image_2.dat writes image_2.png

…
Task 1000 reads image_1000.dat writes image_1000.png

#$ -t 1-1000

imgapp -i image_${SGE_TASK_ID}.dat \

-o image_${SGE_TASK_ID}.png

The $SGE_TASK_ID variable (2)

• Or have a "master" list (a text file) of names etc

• The Nth task reads the Nth line from that text file:

https://ri.itservices.manchester.ac.uk/csf3/batch/job-arrays/ 49

• Number of lines in file must match number of tasks
• To get number of lines in master file use:

wc -l filenamelist.txt

• NB: VAR=$(command arg1 arg2...) captures output
from command and assigned to variable VAR

ptn1511.dat

ptn7235.dat

ptn7AFF.dat

ptn6E14.dat

ptn330D.dat

…

filenamelist.txt Task 1 reads ptn1511.datwrites ptn1511.dat.out

Task 2 reads ptn7235.datwrites ptn7235.dat.out

…

#$ -t 1-4000

Read the Nth line of filenamelist.txt and save in variable MYFILE

MYFILE=$(awk "NR==${SGE_TASK_ID} {print}" filenamelist.txt)

Now use whatever the value of variable is in the next command

myapp.exe -input ${MYFILE} -output ${MYFILE}.out

The $SGE_TASK_ID variable (3)

• Or have a "master" list (a text file) of names etc

• The Nth task reads the Nth line from that text file:

https://ri.itservices.manchester.ac.uk/csf3/batch/job-arrays/ 50

• Number of lines in file must match number of tasks
• To get number of lines in master file use:

wc -l dirnamelist.txt

• NB: VAR=$(command arg1 arg2...) captures output
from command and assigned to variable VAR

znc24/100p/a1

znc24/200p/b2

ag80/100p/b1

ag81/100q/c1

ptn2/50a/a1

ptn3/50b/c1

…

dirnamelist.txt Task 1 reads znc24/100p/a1 as folder name
Task 2 reads znc24/200p/b2 as folder name
…

#$ -t 1-50

Read the Nth line of dirnamelist.txt and save in variable SUBDIR

FOLDER=$(awk "NR==${SGE_TASK_ID} {print}" dirnamelist.txt)

Now use whatever the value of variable is in the next command

cd ~/scratch/experiments/${FOLDER}

mdrun_d

Jobarrays and qstat, qdel
• qstat shows running tasks and tasks still waiting

•

• qdel can remove all tasks or just some
qdel 675199 Remove all running and waiting
qdel 675199 -t 300 Remove task 300 (a bit strange)
qdel 657199 -t 4000-5000 Remove last 1000 tasks

51

Jobarray Output Files

• You'll get the usual output .o file and error .e
file (hopefully empty) but

– One per task

– Potentially a lot of files!

• Look for
jobname.oJobID.TaskID and
jobname.eJobID.TaskID

• You should delete empty / unwanted files
soon and often

52

PRACTICAL SESSION 5
Job array examples

53

Practical Session 5 (job array)
• Write a small job array to process some images
• Go to ~/training/RCSF/examples/hudf_images/

– Has some images from Hubble Ultra Deep Field
https://esahubble.org/images/heic0611b/
Credit: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team

– To list them: ls -l To view one: eog hudf_1.png

– Write a serial jobscript to process an image using:
module load apps/binapps/anaconda3/2021.11
python process.py filename.png

– Add the jobarray #$ -t line to it (with start and end) and
use $SGE_TASK_ID in the image filename

• Check the results in xxxxx.oJobID.TaskID
• Q: Which image has most objects detected?
• On login node run: eog filename.png to see images
• No exercise sheet again ;-)

54

Practical Session 5 (advanced job array)
• Write a small job array to run an app with different input

parameters (taken from a list of input params).
• Go to ~/training/RCSF/examples/
• You should now be able to

– Get number-of-lines in the numberlist.txt file (the list of inputs)
– Begin writing a serial jobscript
– Add the jobarray #$ -t line to it (with start and end)
– Optional: Use CSF3 website to find the #$ flag to "join" .o and .e

outputs into only the .o file (for each task) to reduce number of files.

• Each task should read a line from numberlist.txt (each line in
the file contains an integer)
– Use that integer as a command-line param to a prime-factor

program:
./prime_factor.exe

• Check the results in xxxxx.oJobID.TaskID
• No exercise sheet again ;-)

55

JOB PIPELINES
Ordering jobs

56

A Job Pipeline (aka workflow)

• Suppose you have several jobs that:

– Need to run in a specific order - a job "pipeline"

• There is a dependency between jobs

– Each might have different CPU-core or memory
requirements

– Each might take different amounts of time to run

57

1. Pre-processing job:
raw.dat to clean.dat
- Serial (1-core)
- Low memory
- Runs for several hours

2. Main processing job:
Analyse clean.dat to
result.dat

- Parallel (multi-core)
- High memory
- Runs for many days

3. Post-processing job:
Graphs from result.dat
to graphs.png
- Serial (1-core)
- Low memory
- Runs for under one hour

How not to do it on the CSF (1)

58

#!/bin/bash --login

#$ -cwd

#$ -l mem2000 # Uses a high-memory node and

#$ -pe smp.pe 16 # … reserves 16 cores

… for duration of job

module load apps/………

First 'job' (serial)

preproc -in raw.dat -out clean.dat

Second 'job' (parallel, needs lots of memory)

mapper -p $NSLOTS -in clean.dat -out result.dat

Third 'job' (serial)

drawGraphs -in result.dat -out graphs.png

mypipeline_bad.txt

• Put all steps in one job?

– Wastes resources (some cores and mem)

– May go over 7-day runtime limit

Only one
command uses
all of the cores

Better but still not perfect

59

#!/bin/bash --login

#$ -cwd

module load apps/………

First 'job' (serial)

preproc -i raw.dat -o clean.dat

firstjob.txt

• Split into multiple jobs, notice when jobs finish, submit next…?
– Log in to CSF, check if previous job has finished…. wastes time!

#!/bin/bash --login

#$ -cwd

#$ -l mem2000 # Uses a high-memory node and

#$ -pe smp.pe 16 # … reserves 16 cores

module load apps/………

Second 'job' (parallel)

mapper -p $NSLOTS -i clean.dat -o result.dat

secondjob.txt

#!/bin/bash --login

#$ -cwd

module load apps/………

Third 'job' (serial)

drawGraphs -i result.dat -o graphs.png

thirdjob.txt

qsub firstjob.txt

(now wait until this job has finished before submitting the next one!)
qsub secondjob.txt

(now wait until this job has finished before submitting the next one!)
qsub thirdjob.txt

(now wait until this job has finished before submitting the next one!)

A serial job
(no wasted
cores)

A parallel,
high-mem
job

A serial job
(no wasted
cores)

How to do it - Job Dependencies

60

#!/bin/bash --login

#$ -cwd

module load apps/………

First 'job' (serial)

preproc -i raw.dat -o clean.dat

firstjob.txt

• Split in to multiple jobs, submit all jobs, let SGE manage it!

#!/bin/bash --login

#$ -cwd

#$ -l mem2000 # Uses a high-memory node and

#$ -pe smp.pe 16 # … reserves 16 cores

#$ -hold_jid firstjob.txt

module load apps/………

Second 'job' (parallel)

mapper -p $NSLOTS -i clean.dat -o result.dat

secondjob.txt

#!/bin/bash --login

#$ -cwd

#$ -hold_jid secondjob.txt

module load apps/………

Third 'job' (serial)

drawGraphs -i result.dat -o graphs.png

thirdjob.txt

qsub firstjob.txt

qsub secondjob.txt

qsub thirdjob.txt

• Submit all of your jobs in one go

-hold_jid name (or jobid)
makes the job automatically
wait for the named (earlier) job
to finish. The name can be a
job name or a job ID number.

The jobscript filename is used for the
name of the job (if no #$ -N name) flag
supplied.

… added a job
dependency

… added a job
dependency

The jobscripts
are as before,
but …

Job Dependencies

61

• You must submit the jobs in the correct order

– EG: If secondjob.txt is submitted first, it runs
immediately (no dependency job exists to wait for)

• qstat shows hqw for jobs on hold

• Later jobs may still wait to be scheduled

– They don't always run immediately after earlier jobs
finish

Job Dependencies

62

• Using job names can become messy

– Generalise using the job ID and qsub command-line

– Firstly, remove all #$ -hold_jid name lines from
the jobscripts!

– Then add -hold_jid name to qsub command-line

– Use -terse flag to get just the job ID of the
submitted job (instead of 'long' message):

• qsub myjobscript

Your job 19886 ("myjobscript") has been submitted

• qsub -terse myjobscript

19886

– Capture output of command into shell variable

JOBID=$(qsub -terse firstjob.txt)

JOBID=$(qsub -terse -hold_jid $JOBID secondjob.txt)

JOBID=$(qsub -terse -hold_jid $JOBID thirdjob.txt)

Job-Array Dependencies (1)

63

• An ordinary job can wait for a job array to finish

– All tasks in the job array must have finished
#!/bin/bash --login

#$ -cwd

#$ -t 1-1000 # Job array with 1000 tasks

convert img.${SGE_TASK_ID}.tif img.${SGE_TASK_ID}.pdf

arrayjob.txt

#!/bin/bash --login

#$ -cwd

#$ -hold_jid arrayjob.txt

zip conference.zip img.*.pdf

zipjob.txt

qsub arrayjob.txt

qsub zipjob.txt

arrayjob.txt running zipjob.txt running
1

1000

2

Add a job
dependency

Job-Array Dependencies (2)

64

• A job array can wait for a job array to finish

– All tasks in the first job array must have finished
#!/bin/bash --login

#$ -cwd

#$ -t 1-1000 # Job array with 1000 tasks

someapp data.${SGE_TASK_ID}.xyz data.${SGE_TASK_ID}.dat

arrayjob1.txt

#!/bin/bash --login

#$ -cwd

#$ -t 1-1000 # Job array with 1000 tasks

#$ -hold_jid arrayjob1.txt

someotherapp data.${SGE_TASK_ID}.dat res.${SGE_TASK_ID}.dat

arrayjob2.txt

qsub arrayjob1.txt

qsub arrayjob2.txt

arrayjob1.txt running arrayjob2.txt running
1

1000

2

1
2

1000

Add a job
dependency

Job-Array Dependencies (3)

65

• Job array tasks can wait for other tasks to finish

– A task in second job array waits for same task in first
#!/bin/bash --login

#$ -cwd

#$ -t 1-1000 # Job array with 1000 tasks

someapp data.${SGE_TASK_ID}.xyz data.${SGE_TASK_ID}.dat

arrayjob1.txt

#!/bin/bash --login

#$ -cwd

#$ -t 1-1000 # Job array with 1000 tasks

#$ -hold_jid_ad arrayjob1.txt

someotherapp data.${SGE_TASK_ID}.dat res.${SGE_TASK_ID}.dat

arrayjob2.txt

qsub arrayjob1.txt

qsub arrayjob2.txt

arrayjob1.txt tasks running then arrayjob2.txt tasks
1

1000

2
1

2

1000

Add a job
array (_ad)
dependency

INTERACTIVE AND GPU
COMPUTING
Compute apps with GUIs

66

Interactive work

• Some apps (eg Rstudio, VMD, molden, paraview) may have a GUI
but should not be run on the login node!!

• Use the qrsh command to get an interactive session on a compute
node

module load apps/binapps/rstudio/1.1.463
qrsh -l short -V -cwd rstudio vehicles.R

• No dedicated resource, priority to batch jobs
• Only 4GB per core (contact its-ri-team@manchester.ac.uk if you

need more)
• Remember - it is a GUI app, as with gedit you need Xwindows

running on your PC (MobaXTerm, X-Quartz, Linux)
• Remember to exit your GUI app when you have finished so the

resource is made available for others
• Better options: Virtual Desktop Service and InCLine (Interactive

Computational LInux Environment) also known as iCSF.

67

68

Interactive work (2)

69

Nvidia GPUs
• CSF3 has 152 x Nvidia GPUs

• Also some L40s GPUs (for a specific research group)

• Faster for certain tasks
– All cores perform same instruction

– Operating on different items of data

• Code can be difficult to write (CUDA, OpenCL)

• Several CSF apps already support GPUs
70

68 x Volta v100 GPUs in total – 4 GPUs/node
16GB GPU memory, Mem bandwidth 900GB/s
5120 CUDA cores (80 Multiprocessors, 64 cores/MP)
640 Tensor cores
Peak FP64 7.5 TFLOPS
32-core Intel "Skylake"
192GB RAM host node + InfiniBand

72 x Ampere A100 GPUs in total – 4 GPUs/node
80GB or 40GB GPU memory, Mem bandwidth 2TB/s
6912 CUDA cores (108 Multiprocessors, 64 cores/MP)
432 Tensor cores
Peak FP64 9.7 TFLOPS
48-core AMD Epyc "Milan"
512GB RAM host node + InfiniBand

OTHER PARALLEL HARDWARE
What else is available?

71

HPC Pool

• Dedicated pool for “true” HPC jobs
– 4096 cores of Infiniband connected Skylake

– Minimum 128-core job size, maximum 1024

– Frontend shared with CSF3
• You just submit HPC jobs like any other CSF job (with a

different "PE" name and an account code.)

– Lightweight application process – must be made by PI

– Currently free

https://ri.itservices.manchester.ac.uk/csf3/hpc-pool

72

ITS Condor Service

• Formerly EPS Condor Pool
– Condor manager HTC workflow

– Condor pool is a group of cores available for use

– Condor sends out jobs to the pool (similar to SGE)

– Often cores become available when PCs are idle
• UoM public clusters over night

• Dedicated pool always available

• Condor pool available to all researchers for free
– More than 2000 cores (if all configured PCs available)

– Suitable for short lightweight computations

– Can now burst to the cloud (AWS)!!!

– See https://ri.itservices.manchester.ac.uk/htccondor/
73

ARCHER2

• National supercomputer funded by UK Research
Councils
– Archer2 has replaced Archer which was 118,080 cores

– Now 5,848 compute nodes, each with dual AMD EPYC
Zen2 (Rome) 64 core CPUs at 2.2GHz, giving 748,544
cores in total.

– Estimated peak performance of 28 PFLOP/s

• Mostly open source / free HPC software

• See https://www.archer2.ac.uk/
– Info for how to apply for access

• Applications assessed for suitability

• IT Services can help you apply for access 74

Scafell Pike

• Hartree Centre

– 25,728 Intel Skylake + ~55,680 Xeon Phi cores

• Common open source HPC software installed

• Focus on industry / academia collab. projects

• Contact Research IT for advice

75

N8 Bede (NICE)

• 32 IBM Power 9 dual-CPU nodes
o Each node comprises 4 NVIDIA V100 GPUs and high

performance interconnect.
• 5 Nvidia GH200 Grace Hopper nodes
o Each node comprises 1x NVIDIA H100 96GB with 900

GB/s NVLink-C2C and 1x NVIDIA Grace aarch64 CPU @
3.483 GHz (72 Arm Neoverse V2 cores)

• Same architecture as the US government’s SUMMIT
and SIERRA supercomputers which occupied the
top two places in a recently published list of the
world’s fastest supercomputers.

• Contact Research IT for advice
• https://n8cir.org.uk/supporting-research/facilities/bede/docs/

76

FINAL POINTS
Further info

77

News

• MOTD when you log into the CSF - please read it

• Problems e.g. system down, can’t log in, minor
changes to the service (and other services - e.g
storage):

https://ri.itservices.manchester.ac.uk/services-news/

• Prolonged problems or major changes emailed to
all users

78

its-ri-team@manchester.ac.uk

• More SGE options/parameters
https://ri.itservices.manchester.ac.uk/csf3/batch/qsub-options/

• Job Arrays - multiple similar jobs from a single submission script
https://ri.itservices.manchester.ac.uk/csf3/batch/job-arrays/

• SSHFS - another means of file transfer
https://ri.itservices.manchester.ac.uk/userdocs/file-transfer/

Virtual Desktop Service – another means of connecting and running
GUIs and logging in from off campus
https://ri.itservices.manchester.ac.uk/virtual-desktop-service/

• Please give feedback: Quick form at
https://goo.gl/forms/zfZyTLw4DDaySnCF3
(choose "Introduction to HPC (Using CSF)")

79Thank you!

